एक वस्तु प्रारम्भ में विराम अवस्था में है। एक विद्यार्थी इस वस्तु के मुक्त-पतन में, किसी दिये गये समय में तय की गई दूरी नापता है, और इसका उपयोग गुरूत्वीय त्वरण $'g'$ का मान ज्ञात करने में करता है। यदि दूरी तथा समय की मापों में अधिकतम प्रतिशत त्रुटि क्रमश: $e_{1}$ और $e_{2}$ हो तो, $g$ का मान ज्ञात करने में प्रतिशत त्रुटि होगी

  • [AIPMT 2010]
  • A

    $e_2-e_1$

  • B

    $e_1+2{e_2}$

  • C

    $e_1+e_2$

  • D

    $e_1-2{e_2}$

Similar Questions

एक निकाय की समय $t$ पर ऊर्जा $E(t)=A^2 \exp (-\alpha t )$ फलन द्वारा दी जाती है, जहाँ $\alpha=0.2 s ^{-1}$ हैं। $A$ के मापन में $1.25 \%$ की प्रतिशत त्रुटि है। यदि समय के मापन में $1.50 \%$ की त्रुटि है तब $t =5 s$ पर $E ( t )$ के मान में प्रतिशत त्रुटि होगी।

  • [IIT 2015]

एक पतले उत्तल लेंस की फोकस दूरी के निर्धारण के प्रयोग में लेंस से वस्तु की दूरी $10.0 \pm 0.1 cm$ है तथा उसके वास्तविक प्रतिबिम्ब की लेंस से दूरी $20.0 \pm 0.2 cm$ है| लेंस की फोकस दूरी के निर्धारण में त्रुटि $n \%$ है। $n$ का मान. . . . . है।

  • [IIT 2023]

एक छात्र एक सरल-आवर्त-दोलक के $100$ आवृत्तियों का समय $4$ बार मापता है और उनको $90\, s , 91\, s , 95 \,s$ और $92 \,s$ पाता है। इस्तेमाल की गई घड़ी का न्यूनतम अल्पांश $1\, s$ है। मापे गये माध्य समय को उसे लिखना चाहिये:

  • [JEE MAIN 2016]

हम एक सरल लोलक का दोलन-काल ज्ञात करते हैं। प्रयोग के क्रमिक मापनों में लिए गए पाठ्यांक हैं $: 2.63, s , 2.56\, s , 2.42\, s , 2.71\, s$ एवं $2.80\, s$ । निरपेक्ष त्रुटि, सापेक्ष त्रुटि एवं प्रतिशत त्रुटि परिकलित कीजिए।

अंर्तरास्ट्रीय एवोगाड्रो कोआर्डिनशन परियोजना (The International Avogadro Coordination Project) ने क्रिस्टलीय सिलिकन का उपयोग कर विश्व का सबसे सटीक गोलक बनाया है। इस गोलक का व्यास $9.4 \,cm$ है, तथा व्यास मापने में अनिश्रितता $0.2 \,nm$ है | क्रिस्टल में परमाणु, $a$ भुजा वाले घनों में संकुलित है। घन की भुजा को $2 \times 10^{-9}$ सापेक्षिक त्रुटि से मापा जाता है, एवं प्रत्येक घन में $8$ परमाणु हैं। गोलक के द्रव्यमान में सापेक्षिक त्रुटि निम्न में से किस के करीब होगी ? (मान लीजिए कि सिलिकन का मोलर द्रव्यमान एवं एवोगाड्रो संख्या के मान एकदम सटीक रूप से मालूम हैं।)

  • [KVPY 2021]